skip to main content


Search for: All records

Creators/Authors contains: "Robinson, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cation exchange is a versatile post-synthetic method to explore a wide range of nanoparticle compositions, phases, and morphologies. Recently, several studies have expanded the scope of cation exchange to magic-size clusters (MSCs). Mechanistic studies indicated that MSC cation exchange undergoes a two-stage reaction pathway instead of the continuous diffusion-controlled mechanism found in nanoparticle cation exchange reactions. The cation exchange intermediate, however, has not been well-identified despite it being the key to understanding the reaction mechanism. Only indirect evidence, such as exciton peak shifts and powder x-ray diffraction, has been used to indicate the formation of the cation exchange intermediate. In this paper, we investigate the unusual nature of cation exchange in nanoclusters using our previously reported CdS MSC. High-resolution mass spectra reveal two cation exchanged reaction intermediates [Ag2Cd32S33(L) and AgCd33S33(L), L: oleic acid] as well as the fully exchanged Ag2S cluster. Crystal and electronic structure characterizations also confirm the two-stage reaction mechanism. Additionally, we investigate the Cu/CdS MSC cation exchange reaction and find a similar two-stage reaction mechanism. Our study shows that the formation of dilutely exchanged intermediate clusters can be generally found in the first stage of the MSC cation exchange reaction. By exchanging different cations, these intermediate clusters can access varying properties compared to their unexchanged counterparts. 
    more » « less
    Free, publicly-accessible full text available July 7, 2024
  2. Free, publicly-accessible full text available August 9, 2024
  3. Abstract

    Chiral materials with strong linear anisotropies are difficult to accurately characterize with circular dichroism (CD) because of artifactual contributions to their spectra from linear dichroism (LD) and birefringence (LB). Historically, researchers have used a second‐order Taylor series expansion on the Mueller matrix to model the LDLB interaction effects on the spectra in conventional materials, but this approach may no longer be sufficient to account for the artifactual CD signals in emergent materials. In this work, we present an expression to model the measured CD using a third‐order expansion, which introduces “pairwise interference” terms that, unlike the LDLB terms, cannot be averaged out of the signal. We find that the third‐order pairwise interference terms can make noticeable contributions to the simulated CD spectra. Using numerical simulations of the measured CD across a broad range of linear and chiral anisotropy parameters, the LDLB interactions are most prominent in samples that have strong linear anisotropies (LD, LB) but negligible chiral anisotropies, where the measured CD strays from the chirality‐induced CD by factors greater than 103. Additionally, the pairwise interactions are most significant in systems with moderate‐to‐strong chiral and linear anisotropies, where the measured CD is inflated twofold, a figure that grows as linear anisotropies approach their maximum. In summary, media with moderate‐to‐strong linear anisotropy are in great danger of having their CD altered by these effects in subtle manners. This work highlights the significance of considering distortions in CD measurements through higher‐order pairwise interference effects in highly anisotropic nanomaterials.

     
    more » « less